Contrôle 2 : Spécialité mathématiques - TS3 - TS4 - (sujet A)

1 point pour la propreté de la copie et la rédaction Les exercices peuvent être traités dans n'importe quel ordre

EX 1 (3 points)

Vrai ou faux?

Soit d,a, et b des entiers naturels et u et v des entiers relatifs Si d = au + bv alors d = pgcd(a,b)

EX 2 (4 points)

- 1. Calculer le pgcd d de 165 et 65 par l'algorithme d'Euclide
- 2. En déduire une expression de d comme une combinaison linéaire de 165 et 65

EX 3(4 points)

Il s'agit de résoudre l'équation (E): 13x - 2y = 7 avec x et y des entiers relatifs

- 1. Vérifier que (3;16) est solution de (E)
- 2. En déduire toutes les solutions de (E)

EX 4 (4 points)

On définit une suite S_n d'entiers naturels par $S_n = 3^{2^n} - 2$ pour $n \ge 0$

- 1. Montrer que pour tout $n \in \mathbb{N}$ on a $S_{n+1} + 2 = (S_n + 2)^2$
- 2. En déduire que pour tout $n \in \mathbb{N}$ S_{n+1} et S_n sont premiers entre eux

EX 5 (4 points)

On définit le pgcd de 3 nombres entiers relatifs a,b et c comme étant le plus grand commun diviseur de a,b et c.

On note ce nombre pgcd(a,b,c)

- 1. Montrer que pgcd(a,b,c) = pgcd(pgcd(a,b),c)
- 2. En déduire qu'il existe u,v et $w \in \mathbb{Z}$ tel que $\operatorname{pgcd}(a,b,c) = au + bv + cw$ (une généralisation du Théorème de Bezout)

Eléments de Correction

EX 1 (3 points)

Vrai ou faux? Faux: $4 = 4 \times 6 - 2 \times 10$ mais $2 = \operatorname{pgcd}(6,10)$

EX 2 (4 points)

- 1. On trouve 5 = pgcd(165,65)
- 2. En "remontant l'algorithme d'Euclide" on trouve $5 = 2 \times 165 5 \times 65$

EX 3(4 points)

$$S = \{(3+2k, 16+13k) | k \in \mathbb{Z}\}\$$

EX 4 (4 points)

- 1. $S_{n+1} + 2 = 3^{2^{n+1}} = 3^{2^n \times 2} = (3^{2^n})^2 = (3^{2^n} 2 + 2)^2 = (S_n + 2)^2$
- 2. Or $(S_n + 2)^2 = S_n^2 + 4 + 4S_n$ donc $S_{n+1} + 2 = S_n^2 + 4 + 4S_n$ donc on obtient une combinaison linéaire de S_{n+1} et S_n valant 2 $S_{n+1} S_n \times (S_n 4) = 2$ Donc $\operatorname{pgcd}(S_{n+1}, S_n)|2$ donc $\operatorname{pgcd}(S_{n+1}, S_n)$ vaut 1 ou 2 Or $3 \equiv 1$ [2] donc pour tout $n \in \mathbb{N}$ on a $3^{2^n} \equiv 1$ [2] donc $3^{2^n} 2 \equiv -1 \equiv 1$ [2] Tous les termes S_n étant impairs donc $\operatorname{pgcd}(S_{n+1}, S_n) = 1$

EX 5 (4 points)

Par définition $pgcd(a, b, c) = max(\mathcal{D}(a, b, c))$

- 1. Montrons par la méthode de double inclusion que $\mathcal{D}(a,b,c) = \mathcal{D}(\operatorname{pgcd}(a,b),c)$
 - (a) Montrons que $\mathcal{D}(a, b, c) \subset \mathcal{D}(\operatorname{pgcd}(a, b), c)$ Soit d un diviseur commun quelconque de a, b et c alors d est un diviseur commun de a et b donc de $\operatorname{pgcd}(a, b)$ donc de $\operatorname{pgcd}(a, b)$ et c
 - (b) Montrons que $\mathcal{D}(\operatorname{pgcd}(a,b),c) \subset \mathcal{D}(a,b,c)$ Soit d un diviseur commun quelconque de $\operatorname{pgcd}(a,b)$ et c, puisque d divise $\operatorname{pgcd}(a,b)$ donc d divise a et b et c
- 2. D'après le théorème de Bezout , il existe u,v entiers relatifs tel que $\operatorname{pgcd}(\operatorname{pgcd}(a,b),c) = u\operatorname{pgcd}(a,b) + vc$ de même , il existe w et r relatifs tel que $\operatorname{pgcd}(a,b) = wa + rb$

Donc en tout pgcd(pgcd(a, b), c) = u(wa + rb) + vc = uwa + urb + vc